NEURAL INFORMATION PROCESSING SYSTEMS

WORKSHOP ON SELF-SUPERVISED LEARNING: THEORY AND PRACTICE

Motivation

MDPs

- Markov Decision Processes (MDPs) provide a versatile model of sequential decision-making problems.
- MDPs are extensively used to model various applications arising in autonomous driving, robotics, queuing, marketing, dynamic pricing, etc.
- Solving large-scale MDPs requires tackling the *curses of dimensionalities*.

RL and ADP

- Reinforcement Learning (RL) and Approximate Dynamic Programming (ADP) include a vast collection of techniques to solve challenging MDPs.
- Solving high-dimensional MDPs with most ADP methods require performing value function approximation (VFA).
- *Selecting features* that define VFA typically requires *domain knowledge* and *heuristic hand-engineering*.

ALP through RKSs and Self-guiding Constrains

Exact Linear	$\max_{V'\in\mathcal{C}}$	$\mathbb{E}_{\nu}\big[V'(s)\big]$
Program	s.t.	$V'(s) - \gamma \mathbb{E}[V'(s') \mid s, a] \leq c(s, a),$
Feature-based Exact Linear Program	$\sup_{b_0, b}$ s.t.	$egin{aligned} &b_0 + \left< m{b}, \mathbb{E}_ u[arphi(s)] ight> \ &(1-\gamma) b_0 + \left< m{b}, arphi(s) \ - \ \gamma \mathbb{E}[arphi(s') \mid s, a] ight> \ &\ m{b}\ _{\infty, ho} \end{aligned}$
Feature-based Approximate Linear	\max_{β} s.t.	$\beta_{0} + \sum_{i=1}^{N} \beta_{i} \mathbb{E}_{\nu} [\varphi(s;\theta_{i})]$ $(1 - \gamma)\beta_{0} + \sum_{i=1}^{N} \beta_{i} (\varphi(s;\theta_{i}) - \gamma \mathbb{E}[\varphi(s';\theta_{i}) \mid s])$
Program (FALP)		(-) = 1
Feature-based	$\max_{\boldsymbol{\beta}}$	$\beta_0 + \sum_{i=1}^{N} \beta_i \mathbb{E}_{\nu} \big[\varphi(s; \theta_i) \big]$
Approximate Linear	s.t.	$egin{aligned} &(1-\gamma)eta_0 + \sum_{i=1}eta_i\left(arphi(s; heta_i) - \gamma \mathbb{E}ig[arphi(s'; heta_i)ert \; s,aig] ight) \ &N \end{aligned}$
Program (FALP)		$eta_0 + \sum_{i=1} eta_i arphi(s; heta_i) \ \geq \ Vig(s; oldsymbol{eta}_{_{\mathrm{N-B}}}ig),$

Theoretical Guarantees

What Do FALP and FGLP Guarantee?

VFA Finite Sampling Bound

For a finite number of samples, the sequence of VFAs from both FALP and FGLP models converges to the true value function with a high probability

Convergence of Optimality Gap Sequence

For a finite number of samples, the sequence of upper bounds and lower bounds in our framework converge to a neighborhood of the optimal policy cost with a high probability.

Self-guided Approximate Linear Programs

Parshan Pakiman¹

Selva Nadarajah¹

¹University of Illinois at Chicago, College of Business

- compute VFAs via a linear program
- tackle challenging applications in multiple application domains.
- tackling *feature selection* in ALPs, an implementation hurdle.

What Do Self-guiding Constraints Add?		Value in FALP and FGLP compared to Benchmarks			
Monotonic Improvement of Lower Bounds	The sequence of lower bounds from FGLP is non-decreasing	FGLP Near-optimal Policies	On our instances of perishable inventory control, the FGLP policy <i>optimality gap</i> is at most 5% across these instances and <i>improves</i> by up to 8% of the previously known gaps	F F (J	
Monotonic Improvement of Worst-case Policy Cost	A worst-case cost of greedy policies from FGLP VFAs monotonically decreases.	Upper and Lower Bound Improvement	The cost of <i>FALP and FGLP policies</i> is up to 14% <i>better</i> than the existing policies in the literature.Lower bounds from FALP and FGLP <i>improve</i> existing lower bounds by up to 7%.	F F (r	

Negar Soheili¹ Qihang Lin²

² University of Iowa, Tippie College of Business

Numerical Assessments

Value in Self-guiding Constraints

