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Motivation

MDPs

• Markov Decision Processes (MDPs) 
provide a versatile model of sequential 
decision-making problems.

• MDPs are extensively used to model 
various applications arising in 
autonomous driving, robotics, queuing, 
marketing, dynamic pricing, etc.

• Solving large-scale MDPs requires 
tackling the curses of dimensionalities.

RL and ADP 

• Reinforcement Learning (RL) and 
Approximate Dynamic Programming 
(ADP) include a vast collection of 
techniques to solve challenging MDPs.

• Solving high-dimensional MDPs with 
most ADP methods require performing 
value function approximation (VFA).

• Selecting features that define VFA 
typically requires domain knowledge 
and heuristic hand-engineering.

ALPs

• Approximate Linear Programs (ALPs) 
compute VFAs via a linear program 
with an infinite number of constraints.

• ALPs have been successfully used to 
tackle challenging applications in 
multiple application domains.

• Research on reducing ALP constraints 
is extensive, while there are few works 
tackling feature selection in ALPs, an 
implementation hurdle.

Novelty and Contribution

Replacing Feature Selection in ALPs with 
the Sampling of Randomized Features

Random Kitchen Sinks (RKSs) “Self-guiding” Constrains+

RKSs are used in data mining and 
unconstrained RL (i.e., value iteration) while 
we use them in ALPs, constrained RL models.

RKSs in 
Constrained RL 

Simplifying the implementation of ALPs by 
replacing the feature selection hurdle with 
with the sampling of randomized features.

Simplifying 
Implementation

Constructing a convergent sequence of 
optimality gaps to assess quality of ALP policies.Optimality Gap

Developing an ALP framework for computing 
application-agnostic policies, VFAs, and bounds.

Application-
agnostic Policies

Developing self-guiding constraints to deliver 
a sequence of policies with monotonically 

improving worst-case performance.

Self-guiding 
Constraints

Our application-agnostic policies compete with 
state-of-the-art policies tailored to two 

challenging applications in inventory control.

Numerical 
Advantages

ALP through RKSs and Self-guiding Constrains Self-guided ALPs in Practice
Standard Implementation Proposal Implementation

Exact Linear 
Program 

Feature-based 
Exact Linear 

Program

Feature-based 
Approximate 

Linear 
Program (FALP) 

Feature-based 
Approximate 

Linear 
Program (FALP) 

Dense approximation via RKSs 
associated with universal kernels

Easy-to-compute sample average 
approximation that provides a 
near-optimal VFA for a finite

number of samples

Self-guiding constraints ensure: 
• State-wise improvement of 

the VFA sequence
• Monotonic improvement of 

ALP policies worst-case cost

Theoretical Guarantees Numerical Assessments

Sequence of Upper Bounds 
on the Optimal Policy Cost

Sequence of Lower Bounds 
on the Optimal Policy Cost

Optimal Policy Cost

Cost of FALP and FGLP policies with increasing 
number of basis functions

FALP and FGLP lower bounds with increasing 
number of basis functions

What Do FALP and FGLP Guarantee? What Do Self-guiding Constraints Add?

For a finite number of samples, the 
sequence of VFAs from both FALP and 
FGLP models converges to the true 
value function with a high probability

VFA Finite 
Sampling 

Bound

For a finite number of samples, the 
sequence of upper bounds and lower 
bounds in our framework converge to a 
neighborhood of the optimal policy cost 
with a high probability. 

Convergence 
of Optimality 
Gap Sequence

The sequence of lower bounds from 
FGLP is non-decreasing

Monotonic 
Improvement 

of Lower 
Bounds

A worst-case cost of greedy policies 
from FGLP VFAs monotonically 
decreases.

Monotonic 
Improvement 
of Worst-case 

Policy Cost

Value in FALP and FGLP compared to Benchmarks Value in Self-guiding Constraints

On our instances of perishable inventory 
control, the FGLP policy optimality gap is 
at most 5% across these instances and 
improves by up to 8% of the previously 
known gaps

FGLP 
Near-optimal 

Policies

The cost of FALP and FGLP policies is up 
to 14% better than the existing policies in 
the literature.

Lower bounds from FALP and FGLP 
improve existing lower bounds by up to 7%.

Upper and 
Lower Bound 
Improvement 

The worst-case performance of the FGLP 
policies is up to 36% better than the worst-
case cost of the FALP policies.

FALP 
vs 

FGLP
(Policy)

Since FGLP self-guides its policies, it 
requires up to 10% fewer samples to 
converge compared to FALP, and it thus 
has, on average, 7 minutes shorter runtime

FALP 
vs 

FGLP
(runtime)


