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SHOPPER MARKETING SMOILE’s VIEWPOINT TO SHOPPER MARKETING RELATED LITERATURE AND CONTRIBUTIONS

Challenges in planning shopper marketing campaigns and mining lift data « Lift attribution isolates the effect of individual SM and non-SM factors from the total marketing lift. Empirical optimization (EO; Bartlett & Mendelson 2006, Kao & Roy 2012

v' It views lift attribution as a sequential decision making process which is consistent with the data

What is shopper marketing?
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* Pre-store tactics: social media campaign, TV Ad, coupon Istorical data budget 1 2 3 4 > 6 1 2 3 4 5 6 % X Specific to SM, various business constraints should be integrated into the IRL setting which is not
————= Sequential decision * Tactic planning receives attributed lift as input and prescribes a sequence of * = common in the existing IRL methods.
SM tactics making problem overa | | oSSl finite future planning horizon. Data-driven optimization (Bertsimas & Thiele 2006):
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and after marketing T ’ < Business constraints > s the process of generating SM-tactics -~ 8 information, and business constraints, to benchmark performance of SMOILE.
[ (e.g. budget and planning) and lift data. *  We numerically show that respecting how the data is generated leads to better predictive models of lift.
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NUMERICAL STUDY DATA-DRIVEN LIFT ATTRIBUTION INVERSE LEARNING AND TACTIC PLANNING OPTIMIZATION
e . Lift attribution inverse optimization Modeling lift using consumer behavior
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* Appropriately modeling the data generation process does improve *  Modeling consumer behavior avoids spurious results. Two major U.S. retailers product dispi | | Properties f LIO andTPO N e A / )
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« Min MAD: 1.95% total lift to SM tactics which is consistent with practice. Python & GUROBI performance of lift models and avoids spurious results.
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