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Shopper marketing (SM) involves designing marketing campaigns

benefiting both marketers and retailers that influence the behavior

of shoppers along their path to purchase.

What is shopper marketing?

Examples of shopper marketing tactics

• In-store tactics: paper signage, endcap display, live demo

• Pre-store tactics: social media campaign, TV Ad, coupon

Shopper Marketing

Challenges in planning shopper marketing campaigns and mining lift data

• SM is one of the fastest-growing forms of 

marketing for consumer packaged goods. 

• SM explains 3% to 5% of the total marketing lift.

• SM accounts for 3% to 13% of the total 

marketing budget.

• Mining SM tactics and lift data as well as 

designing SM campaigns are challenging tasks
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1. is a sequential decision making process 
over a finite planning horizon.

2. is the process of generating SM-tactics 
and lift data.

• Lift attribution isolates the effect of individual SM and non-SM factors from the total marketing lift.

• Tactic planning receives attributed lift as input and prescribes a sequence of “optimal” SM tactics for a

finite future planning horizon.

SMOILE’s Viewpoint to Shopper Marketing
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Empirical optimization (EO; Bartlett & Mendelson 2006, Kao & Roy 2012):

ü It views lift attribution as a sequential decision making process which is consistent with the data

generation process.

X Specific to SM, we cannot directly use EO since attributed lift is unknown and it should be mined.

Inverse reinforcement learning (IRL; Ng & Russell 2000, Abbeel & Ng 2004):

ü It captures the temporal link of actions by viewing lift attribution as a sequential decision making

process. IRL makes mining lift consistent with the data generation process.

X Specific to SM, various business constraints should be integrated into the IRL setting which is not

common in the existing IRL methods.

Data-driven optimization (Bertsimas & Thiele 2006):

ü It can handle multiple sources of data as well as various business constraints.

X In the data-driven optimization framework, it is not trivial how the lift attribution should be
modeled as a sequential decision making process.

• We use IRL constraints in a data-driven math program to both handle a wide-array of business

constraints as well as learn a model of lift consistent with the data generation process.

• SMOILE makes both tactic planning and lift attribution steps consistent.

• We use a unique data set including multiple data sources related to SM tactics, point of sales data, lift

information, and business constraints, to benchmark performance of SMOILE.

• We numerically show that respecting how the data is generated leads to better predictive models of lift.
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Table 1: SM state trajectory and decisions for Figure 1.

Week
Retailer Tactic Variable 0 1 2 3 4 5 6

Demo

u 0 0 0 0 3 2 1
a 0 0 0 3 -1 -1 -1
x 0 0 0 0 1 1 1

Walmart � 0 0 0 0 0 1 2

Discount

u 3 2 1 0 0 0 0
a -1 -1 -1 0 0 0 0
x 1 1 1 0 0 0 0
� 0 1 2 3 0 0 0

Demo

u 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0

Target � 0 0 0 0 0 0 0

Discount

u 0 0 0 4 3 2 1
a 0 0 4 -1 -1 -1 -1
x 0 0 0 1 1 1 1
� 0 0 0 0 1 2 3
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Constraints (5)-(6) capture the status of active promotions in period
0. Constraints (7), (8)-(9), (10), and (11)-(13) model conditions (1),
(2), (3), and (4), respectively. Variable domains are speci�ed by (14).

An optimal state trajectory belongs to F (T
P
) and, in addition,

maximizes the lift in sales volume over the panning horizon. Lift
is de�ned as the percentage increase in weekly sales volume over
the sales volume when there are no promotions (referred to as base
sales), where the percentage is computed with respect to base sales.
The lift is the output of a predictive model and is a function of the
SM state vector, as well as, other factors such as non-shopper mar-
keting promotions, weather, etc. We thus de�ne an exogenous state
esrp , which is a vector containing all exogenous features (possibly
forecasts) related to retailer r at planning period p. Speci�cally, the
period p lift corresponding to retailer r at state (srp ,esrp ) is denoted
by the function L

r
p (s

r
p ,es

r
p ).

The choice of SM tactics can be formulated as the optimization
problem shown below.
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s
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The math program (TPO) is a tactic planning model that determines
the SM state trajectory. We will discuss in §3 several business rules
and intuitive speci�cations of the lift model that can be used in this
framework so that (TPO) can solved as a integer program using an
o�-the-shelf commercial solver such as GUROBI or CPLEX.

2.2 Lift Attribution
The (TPO) formulation discussed in §2.1 employs predictive lift
models Lrp (srp ,esrp ) for each (r ,p) 2 R ⇥ T

P to inform sequential
SM tactic choice. Below we propose a data-driven approach to
construct such a predictive model that is consistent with (TPO). To
simplify exposition, we will assume that T P contains distinct time
periods and that we want to train a di�erent model for each period.
For example, T P could contain all the weeks in a year.

The periods in our training set are contained in T
T. Historical

lift is computed from point-of-sale and sales analytics data. Let Srt
and BSrt denote the total sales and base sales volumes for training
period t . We reiterate that base sales volume is an estimate of the
sales volume if there were no promotions and is provided by an ex-
ternal vendor such as Neilsen. The lift estimate for training period
t is then de�ned as L̃rp := (S

r
t � BS

r
t )/BS

r
t , where we use ·̃ to high-

light that it is a historical value. Next, the decision data includes all
the information regarding the SM tactics used during the training
periods. This information can be encoded as a historical SM state
trajectory (s̃rt , t 2 T

T
). Similarly, historical data regarding non-SM

features are captured in an exogenous state trajectory (ẽsrt , t 2 T
T
).

For a given t 2 T
T, we use p(t) to reference the corresponding

period in T
P. For example, if T P are indices of the weeks of a year,

then the indices t1 and t2 for the third weeks of 2015 and 2016,
respectively, satisfy p(t1) = p(t2) = 3.

We specify L
r
p (s

r
p ,es

r
p ) to be a parametric model at a coarser

time scale than T
P (and hence T T) so that the underlying model

can learn the behavior of lift due to SM tactics at the �ner time scale
of the training set. For example, the planning and training periods
could refer to weeks while the model parameters change for each
month of the year. In more detail, we assume that parameters of the
lift model are indexed by the time periods in set TM (✓ T

P) such
that any p 2 T

P and t 2 T
T map tom(p) 2 T

M andm(t) 2 T
M,

respectively. We decompose lift into components attributable to
external factors and SM tactics. Each component is represented
as a linear combination of pre-de�ned “basis” functions. The k-th
basis functions modeling the exogenous and SM lift components at
periodm 2 T

M are denoted by �k (srp ) and�k (esrp ), respectively.
The predicted lift is
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lift function L
r
p (� , � ; srp ,esrp ) is an extended version of Lrp (srp ,esrp )

explicitly showing model parameters. Computing the coe�cient
vectors � and � speci�es the predictive model, and in particular,
the vector � provides an attribution of lift to the use of SM tactics.

The parameters of the model are computed by solving the fol-
lowing lift attribution inverse optimization (LAIO) problem:
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The objective of (LAIO) is to maximize the regularized cumula-
tive lift across all retailers on the observed trajectory (s̃rt , (r , t) 2
R ⇥ T

T
). Regularization is used to avoid over-�tting and handle

degenerate optimal solutions. Constraints (15) ensure that the pre-
dicted lift is a lower bound on the observed lift. Constraints (16)
allow the cumulative lift on the observed SM state trajectory to
be µ worse than the analogous lift values on other feasible SM
state trajectories. Finally, conditions (17) specify the domain of the
model parameters. Indeed, any additional side information, includ-
ing business knowledge on the impact of promotions, can be added
as explicit constraints in (LAIO).

Since regularization using a one-norm in the objective function
has a well-known linear representation, (LAIO) is a linear program.
It embeds useful information to help train a predictive lift model.
First, the lower bound condition (15) makes explicit that the predic-
tive lift model being built will, for all practical purposes, be unable
to explain all the lift in the training set (or the validation set for
that matter) using the features in s and es . Thus, a conservative
predictive model of lift is sought. Next, (LAIO) is consistent with
(TPO) due to constraints (16). These constraints are a relaxation of
the optimality condition originally used in IRL, where the observed
SM state trajectory is required to provide lift that is no worse than
all other feasible SM state trajectories. In particular, the business
rules used for planning are implicitly incorporated in the set F (T

T
)

indexing these constraints. This consistency with (TPO) is not free,
however, as it leads to (LAIO) becoming a linear program with a
potentially large number of constraints due to (16). Nevertheless,
this issue can be handled as discussed in §3.3.

3 SMOILE CONFIGURATION AND
IMPLEMENTATION

The SMOILE framework described in §2 can be con�gured in var-
ious ways. In this section, we illustrate some possibilities, which
we also use in our numerical study. In §3.1 and §3.2 we describe
business rules and lift models, respectively, that can be used with
SMOILE. In §3.3, we possible steps for implementation.

3.1 Business Rules
The de�nition of a feasible SM state trajectory in F (T

P
) using con-

straints (5)-(14) has an integer linear representation. This de�nition
can be extended do include various business rules common in SM
tactic planning, while maintaining the integer linear structure of
the feasible set. We outline a few examples below.

Budget constraint. SM campaigns are often planned around
budget restrictions since using an SM tactic of typeh 2 H at retailer
r 2 R in period p 2 T

P incurs a cost, which we denote by c
r
p,h .

Denoting the available budget for the campaign by B, the budget

constraint can be modeled as’
p2TP

’
r 2R

’
h2H

c
r
p,hx

r
p,h  B. (18)

Maximum active tactics. To avoid SM overexposure, a brand
may want to impose a maximum N

r
p on the number of active tactics

in a period p shown to customers at retailer r . This requirement
can be enforced as’

h2H
x
r
p,h  N

r
p ,8(r ,p) 2 R ⇥ T

P. (19)

Scheduling constraints. There may be period within the plan-
ning horizon where it may not be possible to use a particular
tactic. For example, space may not be possible be available to
use a demo during a certain month at the retailer. The condition
that a tactic h cannot be planned at retailer r during periods T 0

can be enforced by the constraints xrp,h = 0, 8p 2 T
0. A maxi-

mum on the duration of tactics can be enforced via constraints
u
r
p,h +�

r
p,h  UB,8(r ,p,h) 2 R ⇥T

P
⇥H . Other scheduling rules,

such as a minimum number of periods between two active tactics,
can also be modeled by appending additional auxiliary variables.

3.2 Lift Models
Constructing the lift model in §2.2 requires de�ning ELrp (� ;esrp ) and
SMLrp (� ; srp ). Speci�cally, we need to specify the basis function sets
�(·) and �(·) corresponding to the SM and exogenous components
of lift, respectively. There is extant literature on exogenous feature
selection, including the marketing literature, that deals with the
choice of �(·) and its impact. In contrast, work on the choice of �(·),
that is features related to decision making and in particular SM, are
scant to the best of our knowledge. Therefore, we present below
possible de�nitions of SMLrp (� ; srp ), which are driven by speci�c
choices of �(·). To keep our discussion concrete, we will assume T P

and T
T contain weekly periods while TM is at the monthly scale.

We begin with a simple SM lift model that depends only on the
variable x in the state vector.

Model 1: SMLrp (� ,� ; s
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The coe�cients � attempt to learn the average e�ect of each SM
tactic in a month, which we call the base e�ect of a tactic, while the
parameters � capture the interaction e�ect between tactics. Here,
we have � = (� ,� ), � � 0 to enforce that the base SM tactic e�ect
does not hurt sales (although it could have no impact), and � is
unrestricted to allow for a pair of tactics to reinforce and cannibalize
each other, respectively, if this coe�cient is positive and negative.

We now extend SMLrp (� ,� ; srp ) to include structural features of
lift due to SM tactics known in practice. Our �rst extension is

Model 2: SMLrp (� ,�, µ; s
r
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Data-driven Lift Attribution Inverse Learning and Tactic Planning Optimization

We approximate lift via parametric 

models that encode features of both 

SM and non-SM factors.
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We show that leveraging  the consumer behavior in modeling the marketing lift affect 

performance of lift models and avoids spurious results.

Tactic planning optimization

Lift attribution inverse optimization

• LAIO & TPO can be cast as mixed integer linear programs.

• LAIO & TPO can be solved efficiently via commercial solvers.

• LAIO has two parameters controlling near-optimality (𝜇) of historical
SM tactics and overfitting (𝜆), and they can be tuned efficiently.
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Table 1: SM state trajectory and decisions for Figure 1.

Week
Retailer Tactic Variable 0 1 2 3 4 5 6

Demo

u 0 0 0 0 3 2 1
a 0 0 0 3 -1 -1 -1
x 0 0 0 0 1 1 1

Walmart � 0 0 0 0 0 1 2

Discount

u 3 2 1 0 0 0 0
a -1 -1 -1 0 0 0 0
x 1 1 1 0 0 0 0
� 0 1 2 3 0 0 0

Demo

u 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0

Target � 0 0 0 0 0 0 0

Discount

u 0 0 0 4 3 2 1
a 0 0 4 -1 -1 -1 -1
x 0 0 0 1 1 1 1
� 0 0 0 0 1 2 3
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Constraints (5)-(6) capture the status of active promotions in period
0. Constraints (7), (8)-(9), (10), and (11)-(13) model conditions (1),
(2), (3), and (4), respectively. Variable domains are speci�ed by (14).

An optimal state trajectory belongs to F (T
P
) and, in addition,

maximizes the lift in sales volume over the panning horizon. Lift
is de�ned as the percentage increase in weekly sales volume over
the sales volume when there are no promotions (referred to as base
sales), where the percentage is computed with respect to base sales.
The lift is the output of a predictive model and is a function of the
SM state vector, as well as, other factors such as non-shopper mar-
keting promotions, weather, etc. We thus de�ne an exogenous state
esrp , which is a vector containing all exogenous features (possibly
forecasts) related to retailer r at planning period p. Speci�cally, the
period p lift corresponding to retailer r at state (srp ,esrp ) is denoted
by the function L

r
p (s

r
p ,es

r
p ).

The choice of SM tactics can be formulated as the optimization
problem shown below.

max
s
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p ) (TPO)
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The math program (TPO) is a tactic planning model that determines
the SM state trajectory. We will discuss in §3 several business rules
and intuitive speci�cations of the lift model that can be used in this
framework so that (TPO) can solved as a integer program using an
o�-the-shelf commercial solver such as GUROBI or CPLEX.

2.2 Lift Attribution
The (TPO) formulation discussed in §2.1 employs predictive lift
models Lrp (srp ,esrp ) for each (r ,p) 2 R ⇥ T

P to inform sequential
SM tactic choice. Below we propose a data-driven approach to
construct such a predictive model that is consistent with (TPO). To
simplify exposition, we will assume that T P contains distinct time
periods and that we want to train a di�erent model for each period.
For example, T P could contain all the weeks in a year.

The periods in our training set are contained in T
T. Historical

lift is computed from point-of-sale and sales analytics data. Let Srt
and BSrt denote the total sales and base sales volumes for training
period t . We reiterate that base sales volume is an estimate of the
sales volume if there were no promotions and is provided by an ex-
ternal vendor such as Neilsen. The lift estimate for training period
t is then de�ned as L̃rp := (S

r
t � BS

r
t )/BS

r
t , where we use ·̃ to high-

light that it is a historical value. Next, the decision data includes all
the information regarding the SM tactics used during the training
periods. This information can be encoded as a historical SM state
trajectory (s̃rt , t 2 T

T
). Similarly, historical data regarding non-SM

features are captured in an exogenous state trajectory (ẽsrt , t 2 T
T
).

For a given t 2 T
T, we use p(t) to reference the corresponding

period in T
P. For example, if T P are indices of the weeks of a year,

then the indices t1 and t2 for the third weeks of 2015 and 2016,
respectively, satisfy p(t1) = p(t2) = 3.

We specify L
r
p (s

r
p ,es

r
p ) to be a parametric model at a coarser

time scale than T
P (and hence T T) so that the underlying model

can learn the behavior of lift due to SM tactics at the �ner time scale
of the training set. For example, the planning and training periods
could refer to weeks while the model parameters change for each
month of the year. In more detail, we assume that parameters of the
lift model are indexed by the time periods in set TM (✓ T

P) such
that any p 2 T

P and t 2 T
T map tom(p) 2 T

M andm(t) 2 T
M,

respectively. We decompose lift into components attributable to
external factors and SM tactics. Each component is represented
as a linear combination of pre-de�ned “basis” functions. The k-th
basis functions modeling the exogenous and SM lift components at
periodm 2 T

M are denoted by �k (srp ) and�k (esrp ), respectively.
The predicted lift is
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lift function L
r
p (� , � ; srp ,esrp ) is an extended version of Lrp (srp ,esrp )

explicitly showing model parameters. Computing the coe�cient
vectors � and � speci�es the predictive model, and in particular,
the vector � provides an attribution of lift to the use of SM tactics.

The parameters of the model are computed by solving the fol-
lowing lift attribution inverse optimization (LAIO) problem:

max
� ,�

’
r 2R

’
t 2TT

L
r
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�
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Encodes feasibility
of plans

Attributed lift 
from LAIO

Properties of LAIO and TPO
Two major U.S. retailers

Two products

Data sources

Frozen breakfast 

Wings         

60 – 64 weeks of data

Data

We used 
Python & GUROBI

Historical SM tactics

Total lift estimate 

Cost of SM tactics

Budget information

Numerical Study

Cross-validating SMOILE’s parameters Comparing performance of lift models on a test set
Maximum absolute deviation between weekly lifts of 
Model 3 and Nielsen on the validation set. 

• Appropriately modeling the data generation process does improve 

the quality of lift models. 

• Optimal 𝜆∗: 0.1%
• Optimal 𝜇∗: 8.0%
• Min MAD: 1.95%

Maximum absolute deviation between weekly lifts of Model 3 
and Nielsen on the validation set. 

• Modeling consumer behavior avoids spurious results.

• Model 3 with waiting and satiation effects outperforms the

other models.

• On a test set, model 2 and model 3 attribute 3% to 5% of the

total lift to SM tactics which is consistent with practice.
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