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Abstract
Approximate linear programs (ALPs) are well-known models based on value func-
tion approximations (VFAs) to obtain heuristic policies and lower bounds on the
optimal policy cost of Markov decision processes (MDPs). The ALP VFA is a linear
combination of predefined basis functions that are chosen using domain knowledge
and updated heuristically if the ALP optimality gap is large. We side-step the need
for such basis function engineering in ALP – an implementation bottleneck – by
proposing a sequence of ALPs that embed increasing numbers of random basis
functions obtained via inexpensive sampling. We provide a sampling guarantee and
show that the VFAs from this sequence of models converge to the exact value func-
tion. We also show under mild conditions that our ALP policy cost is near-optimal
when the number of sampled random bases is sufficiently large. Nevertheless, the
performance of this ALP policy can fluctuate significantly as more basis functions
are sampled. To mitigate these fluctuations, we “self-guide” our convergent se-
quence of ALPs using past VFA information such that a worst-case measure of pol-
icy performance is improved. Moreover, our method provides application-agnostic
policies and bounds to benchmark approaches that exploit application structure.

1 Introduction
Approximate linear programming [19, 6] is a popular approach to compute value function approxima-
tions (VFAs) for Markov decision processes (MDPs; [17]) that has been applied to various applications
[7, 2, 20, 15, 14, 3, 5]. VFAs in an approximate linear program (ALP) are represented as a linear
combination of functions, referred to as basis functions, such that solving ALP provides their weights,
the ALP VFA and policy, and the ALP lower bound on the optimal policy cost. Figure 1(a) depicts
the steps involved in a standard implementation of ALP. Step (i) selects basis functions using domain
knowledge. Step (ii) solves the ALP formulated using these bases. Step (iii) evaluates the value of the
ALP policy in simulation and computes its optimality gap. Step (iv) modifies the bases and repeats the
process from Step (ii) if the optimality gap is large; otherwise, this process is terminated and the in-
cumbent VFA is returned. Tackling an ALP with a fixed set of bases in Step (ii) is challenging since it
has a large number of constraints and has been a topic of active research (see [11] for a recent overview
of ALP solution techniques). Steps (i) and (iv) are ALP implementation bottlenecks but this issue has
received limited attention in the literature [10, 1, 4]. This workshop paper summarizes the main ideas
of the original paper (OP1), that is under revision at Management Science journal and is available at
https://www.dropbox.com/s/4rsh9srmbjrdzom/NeurIPS_2020_self_guided_ALPs, to tackle basis
function engineering in ALP for a wide class of MDPs with continuous state and action spaces.
Our starting point is a novel reformulation of a discounted-cost MDP, which we refer to as feature-
based exact linear program (FELP). This model is intractable. We approximate it using random bases
to obtain the feature-based approximate linear program (FALP), where a VFA is represented as a
linear combination of randomly sampled basis functions. The randomized nature of FALP allows us
to pursue the modified ALP implementation process illustrated in Figure 1(b). In this scheme, basis
function selection and modification in Steps (i) and (iv) of the standard implementation approach
(Figure 1(a)) have been replaced by inexpensive sampling. We establish that the FALP optimality
gap converges to zero as the number of samples tends to infinity. Despite this asymptotic property,
neither the FALP lower bound nor its policy cost may improve monotonically as more bases are
sampled. While the former issue can be handled easily, the latter is undesirable and is harder to tackle.
We propose a mechanism for the FALP sequence to self-guide its VFAs in a manner that addresses
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Figure 1: ALP implementation strategies.
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the non-monotonic behavior of bounds. We refer to FALP with this self-guiding mechanism as the
feature-based guided linear program (FGLP) and embed it in lieu of FALP in the iterative process
of Figure 1(b). Therefore, unlike FALP VFAs, the sequence of FGLP VFAs provides monotonically
decreasing lower bounds and policy costs with a monotonically non-increasing worst case bound.
Novelty and Contributions. Research on ALPs predominantly assumes a fixed set of basis functions.
Work that relaxes this assumption, as we do, is limited. Two convergent basis function generation
algorithms are developed in [10] and [1], where they require solving challenging nonlinear programs
and the knowledge of problem-specific structure, respectively. Instead, our approach uses low-cost
sampling and is agnostic to the application. To tackle basis function generation, the kernel trick is
used by [4] to replace the inner-products of basis functions in the dual of a regularized ALP relaxation.
Unlike the approximation guarantees in [4], that need an idealized sampling distribution depending on
an optimal policy, our VFA guarantees are not linked to the knowledge of an optimal policy. Moreover,
our work builds on the seminal research on random basis functions in [18]. There is extant literature
applying this idea to machine learning applications [12, 13, 21], and a value iteration algorithm by [8].
Our investigation of the variance in the quality of policies obtained from VFAs based on random bases
as well as the subsequent addition of self-guiding constraints to mitigate this issue are both novel.
Organization of Paper. In §2, we present the FELP reformulation of infinite horizon discounted-cost
MDPs. In §3, we present FALP and our algorithm formalizing the iterative procedure in Figure 1(b).
In §4, we discuss FGLP and conclude in §5. Appendix A provides additional details on FALP, FGLP,
and policy cost fluctuations. Note that in §§5-6 of OP1, we asses the performance of our policies on
challenging instances of perishable inventory control and generalized joint replenishment applications.

2 Exact Linear Programs for MDPs
Standard Exact Linear Program. Consider a decision maker controlling a system over an infinite
horizon. A (stationary and deterministic) policy π : S 7→ As assigns an action a ∈ As to each state
s ∈ S where S ⊆ <dS denotes the MDP state space and As represents the feasible action space at
state s. We assume S and As for all s ∈ S are continuous and compact sets. An action a ∈ As taken
at state s ∈ S results in an immediate cost of c(s, a) and the transition of the system to state s′ ∈ S
with probability P (s′|s, a). The decision maker’s objective is to find an optimal policy π∗ ∈ Π,
where Π is the set of feasible policies, that minimizes long-run discounted expected costs, which is,

π∗ ∈ arg min
π∈Π

Eχ[PC(s, π)] s.t. PC(s, π) := E

[ ∞∑
t=0

γtc(sπt , π(sπt ))

∣∣∣∣ s0 = s

]
. (1)

Distribution χ over S is on the initial state s0, expectation E is taken with respect to the state-action
probability distribution induced by P (·|s, a) and π, γ ∈ (0, 1) is a discount factor, and sπt is the state
reached at stage t when following this policy. Notation PC(s, π) shows the long-run discounted
expected cost of a policy π starting from s0 = s. There are known conditions that ensure the
existence of π∗ and we take them to be true in this paper (see pages 46-47 of [9] and EC.1.1 of OP1).
Let C be the class of continuous maps over S and define the MDP value function V ∗(s) := PC(s, π∗).
Throughout, we assume V ∗ is continuous. It is known that value function can be conceptually
computed from the exact linear program (ELP; see, e.g., pages 131-143 of [9]),

max
V ′∈C

Eν [V ′(s)] s.t. V ′(s) − γE[V ′(s′)|s, a] ≤ c(s, a), ∀(s, a) ∈ S ×As,

where ν is a state-relevance distribution that specifies the relative importance of each state in the state
space. ELP is intractable since it has continuums of decision variables and constraints.
Feature-based Exact Linear Programs. Consider random basis function ϕ(·; θ) : S 7→ < and its
associated sampling distribution ρ(θ) that are parameterized by θ ∈ Θ. Define the class of functions,

RC(ϕ, ρ) :=
{
V : S 7→ <

∣∣ ∃(b0, b) with V (s) = b0 + 〈b, ϕ(s)〉 and ‖b‖∞,ρ ≤ C
}
,

where b0 ∈ < is an intercept, b : Θ 7→ < is a weighting function, C ∈ <+ is a constant,
〈b, ϕ(s)〉 :=

∫
Θ
b(θ)ϕ(s; θ)dθ is an inner product, and ‖b‖∞,ρ := supθ |b(θ)/ρ(θ)| is referred to as the
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(∞, ρ)-norm. Random Fourier basis functions defined as ϕ(s; θ) = cos(θ0 + θ1s1 + · · ·+ θdSsdS )
are a popular choice where θ0 and each θi for i ≥ 1 are sampled, respectively, from a uniform
distribution over the interval [−π,π] and a mean-zero normal distribution with the standard deviation
of σ > 0. The reformulation of ELP relies on “universal” random basis functions. We say ϕ with
sampling density ρ is universal if for every V ∈ C and ε > 0, there is a constant C > 0 such that
V̄ ∈ RC(ϕ, ρ) and ‖V − V̄ ‖∞ := maxs |V (s)| < ε. Random Fourier basis functions are universal.
Since V ∗ is continuous in our setting and ϕ is universal, replacing variables V ′(s) modeling V ∗(s) in
ELP by the inner product b0 + 〈b, ϕ(s)〉 should intuitively not result in any significant error. Perform-
ing this replacement and requiring b0 + 〈b, ϕ(s)〉 ∈ RC(ϕ, ρ) gives the following program, FELP,

sup
b0,b

‖b‖∞,ρ≤C

b0 + 〈b,Eν [ϕ(s)]〉
s.t. (1− γ)b0 + 〈b, ϕ(s) − γE[ϕ(s′) | s, a]〉 ≤ c(s, a), ∀(s, a) ∈ S ×As

We show in Appendix A.1 that the optimal FELP solution approximates V ∗ with arbitrary accuracy.

3 Feature-based Approximate Linear Programs
In the literature, an ALP is derived by replacing V ′ in ELP by a VFA with pre-specified basis functions.
Instead, we obtain an ALP by replacing b0 + 〈b, ϕ(s)〉 in FELP by the sampled VFA V (s;β) :=

β0 +
∑N
i=1 βiϕ(s; θi) where each θi is an iid samples from ρ and β := (β0, β1, . . . , βN ). We refer to

the ALP constructed using these N samples as feature-based approximate linear program, FALP(N),

max
β

β0 +

N∑
i=1

βiEν
[
ϕ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi
(
ϕ(s; θi)− γE

[
ϕ(s′; θi)|s, a

])
≤ c(s, a), ∀(s, a) ∈ S ×As (2)

Let βFA

N := (βFA
N,0, . . . , β

FA
N,N ) be an FALP(N) optimal solution and define shorthand V (β) ≡ V (·;β).

It is known that ALP provides VFAs that are state-wise lower bound on V ∗. Similarly, in our setting,
we have V (βFA

N ) ≤ V ∗ for a any N . Also, for N ′ > N , if FALP(N′) contains the same random bases
as FALP(N) andN ′−N additional iid sampled basis functions, then the VFA from FALP(N′) improves
the FALP(N) VFA with respect to (1, ν)-norm, that is, ‖V ∗−V (βFA

N′ )‖1,ν ≤ ‖V ∗−V (βFA

N )‖1,ν . More-
over, we derive a finite sampling bound on N for VFA V (βFA

N ) to be close to V ∗ in Appendix A.2.

Algorithm 1: Random Basis Function Generation for VFA Computation using Math Programs

Require: distribution ν, pair (ϕ, ρ), math programM(N), optimality tolerance τ , and batch size B.
Initialize: N ← 0, ϑ← {}, βUB ← 0 ∈ RB , βLB ← 0 ∈ RB , and τ∗ ← 1.
while τ∗ > τ do

(i) Update N = N +B.
(ii) Sample B independent samples {θ1, . . . , θB} from ρ(θ) and set ϑ = ϑ ∪ {θ1, . . . , θB}.
(iii) SolveM(N) to obtain coefficents βN ∈ <N+1 and compute PC(βN) and LB(βN).
(iv) if LB(βN) ≥ LB(βLB) do redefine βLB as βN.
(v) if PC(βN) ≤ PC(βUB) do redefine βUB as βN.
(vi) Compute τ∗ = 1− LB(βLB)/PC(βUB).

Return: coefficients βLB and βUB.

Algorithm. Given the worst case nature of the bound on N in Theorem 1, it is likely too large to
be used in practice. We thus evaluate if a particular N is large enough to obtain near-optimal policies
and bounds from FALP(N). For a function V (β) ≤ V ∗, the lower bound on the optimal policy cost
PC(π∗) ≡ Eχ[V ∗(s)] is LB(β) := Eχ[V (s;β)]. The upper bound is defined with respect to the
so-called greedy policy πg(βFA

N ) associated with V (βFA

N ) (see, e.g., [16]). The action taken by this
policy at state s ∈ S solves program mina∈As{c(s, a) + γE[V (s′;βFA

N )|s, a]}. Algorithm 1 employs
FALP(N) in an iterative procedure reflecting the scheme in Figure 1(b). We useM(N) to represent
a generic math program (= FALP(N) in this section) parameterized by ν and the number of samples
N . The main steps of the algorithm are the following. In Step (i), the number of sampled bases is
incremented by B. In Step (ii), B independent basis function parameters are sampled from ρ(θ)
and appended to ϑ. In Step (iii), the math programM(N) embedding the random bases of set ϑ
is solved and the resulting VFA coefficient vector βN is used to compute the greedy policy cost
PC(βN) := PC(πg(β)) and lower bound LB(βN). Steps (iv) and (v) update βLB and βUB if there
is improvement in the lower bound and policy cost, respectively. The optimality gap percentage τ∗
is updated in Step (vi) using LB(βLB) and PC(βUB). If τ∗ ≤ τ , Algorithm 1 terminates and returns
the VFA vectors βLB and βUB corresponding to the tightest lower bound and best policy, respectively.
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In Appendix A.3 we show under a mild condition that Algorithm 1 converges. Despite the asymptotic
property of lower and upper bounds in Algorithm 1, LB(βN) and PC(βN) may not monotoni-
cally improve with N . For ν = χ, the sequence of lower bounds becomes monotonic because
LB(βN) ≡ Eχ[V (βN)] and the objective function Eν [V (βN)] of FALP(N) coincide. However, even
for ν = χ, PC(βFA

N ) may worsen as more random bases are added. We refer to this undesirable
behavior as policy cost fluctuation. Let µχ(S1;β) be the state visit frequency that encodes the
probability of visiting subset S1 ⊆ S when actions are taken under πg(β) and the initial state s0

is distributed according to χ. We formalize the definition of µχ(β) ≡ µχ(S1;β) in Appendix A.3.
Proposition 1 shows that for a VFA satisfying V (β) ≤ V ∗, the extra cost incurred by using the greedy
policy πg(β) instead of π∗ is bounded by the (1, µχ(β))-norm difference between V (β) and V ∗.
Proposition 1 (Theorem 1 in [6]) For a VFA V (β) satisfying V (β) ≤ V ∗, on has that PC(β) −
PC(π∗) ≤ ‖V (β)− V ∗‖1,µχ(β)/(1− γ).

This result implies if ν = µχ(β), then an FALP VFA with a small (1, ν)-norm error also guarantees
good greedy policy performance, but such a performance guarantee does not hold when these frequen-
cies differ. Therefore, it may be possible to mitigate policy cost fluctuation (see Appendix A.4) by
improving the VFA at each iteration of Algorithm 1 with respect to both (1, µχ(β))- and (1, ν)- norms.

4 Self-guided Approximate Linear Programs
Motivated by Proposition 1, we explore the strategy of mitigating policy cost fluctuation by improving
the term ‖V (β) − V ∗‖1,µχ(β). We begin by presenting a modification of FALP(N) to be used in
conjunction with Algorithm 1, which we dub feature-based guided linear program and abbreviate
FGLP(N). We then describe how this linear program improves the aforementioned bound. Denoting
by βFG

N−B an optimal solution to FGLP(N−B) and letting V (βFG

0 ) ≡ −∞, FGLP(N) entails the same deci-
sion variables, objective function, and constraints as FALP(N), in addition to self-guiding constraints,

β0 + β1ϕ(s; θ1) + · · ·+ βNϕ(s; θN ) ≥ V
(
s;βFG

N−B

)
, ∀s ∈ S. (3)

Proposition 2 SupposeM(N) = FGLP(N) in Algorithm 1. Then, for any given n > 1, the sequence
of VFAs generated by this algorithm up to iteration n satisfies

V (s;βFA

B ) = V (s;βFG

B ) ≤ V (s;βFG

2B) ≤ · · · ≤ V (s;βFG

nB) ≤ V ∗(s), ∀s ∈ S. (4)

Proposition 2 establishes a key property of FGLP. The equality in (4) follows from our assumption that
V (βFG

0 ) = −∞. It is easy to show that inequality V (s;βFG

n̄B) ≤ V ∗(s) holds for all s ∈ S, and the
inequalities of the type V (s;βFG

N−B) ≤ V (s;βFG

N ) are implied by constraints (3). Proposition 2 suggests
that Algorithm 1 with FGLP generates a sequence of VFAs that gets (weakly) closer to V ∗ at all
states. As a result, unlike FALP, the FGLP lower bound LB(βN) is non-decreasing withN even when
the state-relevance distribution ν is not equal to the initial-state distribution χ. Also, VFAs V (βFG

N )
and V (βFG

N−B) fulfill ‖V (βFG

N )− V ∗‖1,µ ≤ ‖V (βFG

N−B)− V ∗‖1,µ for any proper distribution µ defined
over S. Thus, for a fixed n̄ and its corresponding distribution µχ(βFA

n̄B), ‖V (βFA

nB)− V ∗‖1,µχ(βFA
n̄B

)

is non-increasing in n. This property tackles policy cost fluctuation but does not hold when using
FALP. We illustrate how FGLP mitigates policy cost fluctuation in Appendix A.4.
Studying the quality of the sequence of FGLP VFAs generated by Algorithm 1 is challenging because
consecutive VFAs in this sequence are coupled by the self-guiding ALP constraints (3). Analogous
to Theorem 1, we investigate a finite sampling bound for FGLP(N). The techniques used to obtain a
sampling bound for FALP(N) in Theorem 1 (understandably) do not factor in the effect of V (βFG

N )
(see EC.3 in OP1) and thus do not provide a useful lower bound on H for FGLP of the type described
above. We therefore develop a new projection-based analysis to bound H . We show that for a given
VFA V (s;βFG

N ), there is a finite H and vector βFG

N+H such that βFG

N+H is feasible to constraints (2) and
is near-feasible to constraints (3), and VFA V (s;βFG

N+H) is “close” to V ∗(s). We refer a reader to §4.2
of OP1for additional details and explanations on the FGLP sampling bound.

5 Conclusions
We propose a procedure for basis function generation in approximate linear programming, which is an
established approach to obtain value function approximations (VFAs) for high dimensional Markov
decision processes (MDPs). Our application-agnostic procedure embeds random basis functions
generated via inexpensive sampling in an approximate linear program (ALP), which we refer to
as random feature-based ALP (FALP). FALP side-steps the implementation task of basis function
engineering when using ALP, which is typically both ad-hoc and application-specific. We provide a
sampling guarantee for the VFA generated by FALP to be arbitrarily close to the MDP value function.
Despite this worst-case sampling guarantee, the FALP policy performance can fluctuate significantly
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as random basis functions are added to FALP iteratively. We modify FALP, dubbed feature-based
guided linear program (FGLP), to circumvent this issue. FGLP adds constraints to FALP requiring
its VFA to be a pointwise upper bound on a previously constructed FGLP with fewer random bases.
Similar to FALP, we develop a finite sampling bound for FGLP.

Notes
OP1. The original paper associated with this workshop paper is currently under revision at Management Sci-

ence journal and is available at https://www.dropbox.com/s/4rsh9srmbjrdzom/NeurIPS_2020_self_
guided_ALPs.
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A Appendix
A.1 FELP Reformulation
Similar to [18], we make the following technical assumptions on random bases to establish our theoretical results.

Assumption 1 The class of random basis functions ϕ is universal, and its sampling distribution ρ has a
finite second moment and satisfies ρ(θ) ∈ (0, Uρ] for all θ ∈ Θ for a finite positive constant Uρ. Moreover,
ϕ(s; θ) = ϕ̄

(
q +

∑dS
i=1 ωisi

)
, where θ = (q, ω1, . . . , ωdS ) and ϕ̄ : R 7→ R is a mapping with finite Lipschitz

constant L that satisfies ‖ϕ̄‖∞ ≤ 1 and ϕ̄(0) = 0.

Let (bFE
0 , bFE) denotes an FELP optimal solution and define the function V FE(s) := bFE

0 + 〈bFE, ϕ(s)〉. Also,
define (1, ν)-norm of a function V as ‖V ‖1,ν := Eν [|V |]. Proposition 3 establishes that the function V FE

defined by an optimal FELP solution approximates V ∗ arbitrarily closely with respect to the (1, ν)-norm.

Proposition 3 Fix ε > 0. There exists a finite constant C ∈ <+ such that any optimal solution (bFE
0 , bFE) to

FELP with parameter C satisfies ‖V ∗ − V FE‖1,ν ≤ 2ε/(1− γ).

A.2 FALP Sampling Bound
Theorem 1 establishes an FALP(N) sampling bound relying on constants,

Ω := 4L(diam(S) + 1)(Eρ [〈θ, θ〉])1/2 and ∆δ := (2 ln (1/δ))1/2,

where δ ∈ (0, 1] is a fixed number, L ∈ <+ is a constant in Assumption 1, Eρ is expectation under ρ, and
diam(S) := maxs‖s‖2 is the diameter of S.

Theorem 1 Given ε > 0, δ ∈ (0, 1], and

N ≥
⌈
ε−2 ‖bFE‖2∞,ρ((1 + γ)Ω/2 + ∆δ)

2⌉,
any FALP(N) optimal solution βFA

N , satisfies ‖V ∗ − V (βFA
N )‖1,ν ≤ 4ε/(1−γ) with a probability of 1− δ.

The bound in Theorem 1 is based on concentration arguments analogous to [18] but augmented to a constrained
setting by leveraging the structure of FALP(N). First, a given infeasible solution to this program can be made
feasible by scaling β0 of the VFA. Second, a (1, ν)-norm guarantee between V (βFA

N ) and V ∗ is intuitively
possible without knowledge of V ∗ because FALP(N) is equivalent to,

min
β
‖V (β)− V ∗‖1,ν s.t. V (s;β)− γE

[
V (s′;β) | s, a

]
≤ c(s, a), ∀(s, a) ∈ S ×As,

by the virtue of Lemma 1 in [6]. Finally, we sharpen the constant in the original bound of [18] using ALP
property V (βFA

N ) ≤ V ∗ (see EC.2 of OP1for details).

A.3 Convergence of Algorithm 1
Proposition 4 shows that Algorithm 1 withM(N) = FALP(N) terminates under mild conditions. For a given
greedy policy πg(β), define its state visit frequency µχ(β) as follows (see pages 132–133 in [9]):

µχ(S1;β) := χ(S1) +

∞∑
t=0

γt+1E
[
P
(
s
πg(β)
t+1 ∈ S1 | st, πg(st;β)

)]
(5)

where state sπg(β)
t+1 and probability P retain their definitions from §2, and χ(S1) is the probability of the initial

state belonging to S1. Exception E is taken with respect to policy πg(β) and distribution χ.

Proposition 4 Suppose that M(N) = FALP(N) in Algorithm 1, the distribution ν assigns positive mass to
all non-zero measure subsets of the state space, and the state-visit frequency µχ(βN) is bounded above by
a constant for all N . Then, for a given δ ∈ (0, 1] and τ ∈ (0, 1], Algorithm 1 terminates after a finite number
of iterations with a probability of at least 1− δ.

Proposition 4 establishes that the lower bounds and policy costs generated by Algorithm 1 withM(N) = FALP(N)

converge towards each other as the number of samples tends to infinity.

A.4 Illustrating Policy Cost Fluctuation
Consider a simple version of MDP (1) with S = As = [0, 1]. State transitions are governed by the discrete
distribution P (s′ = s|s, a) = 0.1, P (s′ = a|s, a) = 0.9, and P (s′ 6∈ {s, a}|s, a) = 0. The immediate cost
function is c(s, a) = |s − 0.5| for all (s, a) ∈ S × As and future costs are discounted by γ = 0.9. Initial
distribution χ is chosen to be uniform over S. The optimal action π∗(s) for all s ∈ S equals 0.5 since c(s, a)
equals 0, if s = 0.5, and is strictly positive, otherwise. Therefore, we have V ∗(s) = c(s, 0.5)/(1− 0.1γ) for
all s ∈ S . The optimal policy cost PC(π∗) is 0.27. Figure 2 displays this information using thick (purple) solid
lines. For this MDP, greedy policy optimization reduces to mins∈[0,1] V (s;β), which means πg(s,β) = s̄
for all s ∈ S where s̄ minimizes V (·;β).

Next, we analyze the VFAs and greedy policies resulting from the application of Algorithm 1 for three consecutive
iterations with the parameter B set to 1. Specifically, we compare iterations two and three, which correspond
to FALP with two and three random bases, respectively. We let ν = χ so that the lower bound LB(βN) is
non-decreasing inN and we can focus only on the fluctuation of the policy cost PC(βN). We use Fourier random
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Figure 2: Results from executing Algorithm 1 with FALP on example.
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basis functions ϕ(s; θ) = cos(θs), where θ ∈ <, to define FALP VFA. At the end of iteration two, suppose the
random bases correspond to the sampled parameters in set ϑ = {2,−5} and βLB = βUB = βFA

2 . Figure 2 plots
V (βFA

2 ) and πg(βFA
2 ) in (green) dashed-dotted lines and displays the associated bounds using circular markers.

The minimum of V (·;βFA
2 ) is attained at 0.513 and LB(βFA

2 ) equals 0.15. Moreover, πg(s,βFA
2 ) equals 0.513

for all s ∈ S and the greedy policy cost PC(βFA
2 ) equals 0.39. The corresponding optimality gap τ∗ is 60.9%.

At iteration three, we consider two scenarios for the sample θ3.

Scenario 1 (θ3 = 3). VFA V (βFA
3 ) with parameters in ϑ = {2,−5, 3}, its greedy policy, and optimality gap are

shown in Figure 2 using (red) dashed lines and diamond markers. The function V (·;βFA
3 ) attains its minimum

over s at 0.507 and πg(βFA
3 ) equals this value at all states. In addition, LB(βFA

3 ) and PC(βFA
3 ) are 0.23 and

0.34, respectively, with both bounds improving over their respective iteration 2 values. Also, πg(βFA
3 ) becomes

the best policy computed thus far with the optimality gap of 30.2%, which is significantly lower than the gap
in iteration two because of the improvements in both the lower bound and policy cost.

Scenario 2 (θ3 = 40). The information displayed by (dark blue) dotted lines and triangular markers in Figure
2 corresponds to VFA V (βFA

3 ) with parameters in ϑ3 = {2,−5, 40}. Both the minimum of V (·;βFA
3 ) and

πg(β
FA
3 ) equal 0.598. The lower bound LB(βFA

3 ) is 0.18 and improves on LB(βFA
2 ) as expected because ν

equal to χ. Thus, βLB = βFA
3 . In contrast, the upper bound PC(βFA

3 ) is 1.14, which is worse than PC(βFA
2 ),

and βUB thus remains βFA
2 . In other words, we do not find an improved greedy policy. The optimality gap

computed by Algorithm 1 equals 53.5% and is based on PC(βFA
2 ) and LB(βFA

3 ). This gap is smaller than the
one of iteration 2 due to the stronger lower bound. If one instead computed the optimality gap of πg(βFA

3 ) with
respect to LB(βFA

3 ), it would be 84.2% (i.e., 1− 0.18/1.14), which highlights the significant worsening of the
greedy policy in iteration 3.

Scenario 2 of iteration 3 makes concrete the notion of policy cost fluctuation in FALP. We analyzed both above
scenarios when using Algorithm 1 withM(N) = FGLP(N). As a result of the self-guiding constraints in FGLP,
the worst-case bound on policy performance was roughly equal to 0.08 for both scenarios 1 and 2 of iteration 3,
which is a significant improvement over the respective worst-case performance bounds of 0.99 and 9.98 when
using FALP. Interestingly, accompanying this worst-case bound improvement, the policy cost improved in both
the scenarios of iteration 3.
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